New accelerated conjugate gradient algorithms as a modification of Dai-Yuan's computational scheme for unconstrained optimization

نویسنده

  • Neculai Andrei
چکیده

New accelerated nonlinear conjugate gradient algorithms which are mainly modifications of the Dai and Yuan’s for unconstrained optimization are proposed. Using the exact line search, the algorithm reduces to the Dai and Yuan conjugate gradient computational scheme. For inexact line search the algorithm satisfies the sufficient descent condition. Since the step lengths in conjugate gradient algorithms may differ from 1 by two order of magnitude and tend to vary in a very unpredictable manner, the algorithms are equipped with an acceleration scheme able to improve the efficiency of the algorithms. Computational results for a set consisting of 750 unconstrained optimization test problems show that these new conjugate gradient algorithms substantially outperform the Dai-Yuan conjugate gradient algorithm and its hybrid variants, Hestenes-Stiefel, Polak-Ribière-Polyak, CONMIN conjugate gradient algorithms, limited quasi-Newton algorithm LBFGS and compare favourable with CG_DESCENT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Accelerated Conjugate Gradient Algorithms for Unconstrained Optimization

New accelerated nonlinear conjugate gradient algorithms which are mainly modifications of the Dai and Yuan’s for unconstrained optimization are proposed. Using the exact line search, the algorithm reduces to the Dai and Yuan conjugate gradient computational scheme. For inexact line search the algorithm satisfies the sufficient descent condition. Since the step lengths in conjugate gradient algo...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems

In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...

متن کامل

Another nonlinear conjugate gradient algorithm for unconstrained optimization

A nonlinear conjugate gradient algorithm which is a modification of the Dai and Yuan [Y.H. Dai and Y, Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), pp.177-182.] conjugate gradient algorithm satisfying a parametrized sufficient descent condition with a parameter k δ is proposed. The parameter k δ is computed by means of the conj...

متن کامل

A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization

A modification of the Dai-Yuan conjugate gradient algorithm is proposed. Using the exact line search, the algorithm reduces to the original version of the Dai and Yuan computational scheme. For inexact line search the algorithm satisfies both the sufficient descent and conjugacy condition. A global convergence result is proved when the Wolfe line search conditions are used. Computational result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2010